Introduction to
Oracle & XML

Version 1.2
March 2014

hos dimitrahad

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

Table of contents

1 INTRODUCTION

1.1 ORACLE ..evvveeenne
1.2 PREREQUISITES
1.3 STRUCTURE etteteeteeeeiuuiitteteteteeeeeassauutitaeeeeeeeeeeessssaausessebaeeeeeesessssaasssssebaeeaeeeeesssaaanssssstnaeaeaeeesssannn beneeasessssnnnnnnns
2 ORAGCLE 12C.....ccciiuerenennnennnssesississsisisnsieniisesessessesssssssssssssssssssssssssssssssssssanssasane
2. L INSTALLATION 1uutttteeeeuureeeeesureeesassnsaeesaasssseesasssaessssssssssasssssesasssssessnsssssessnssssssssassssesessssesesssnssessessssseensssesenansnn
2.1.1 Services
2.2 SQOL DEVELOPER....ttttttteeteeesssitittttttteeeesessssaausseseaeeteesesesssnassssssseeeeesessssassssssssseeeeeeeessssnnmssssssseeeeeesessnssssneeeeesees
3 I 0 N 9
BLL XML DATA TYPE cettttittteeeeeeeessaiittttttteeeeeeessaaauutas bttt eeeaeeesssaaansasbaa e e eaaeessssaasnsssbaaeeeaaeesesensssssnsssnenaaeeees sunssnnneees 10
4 EXAIMPLESciiiiiiiiiiiiiiieieeeeennaesnsesssssssssssesessssssessessessessssassnssnsnssssssssssssssss 10
4.1 XMLELEMENT, XMLFOREST, XMLATTRIBUTESccccttteieiitiieeeeccireeeeesiteeeeesitreeeesesaeeessnsseeessnnnsseessnssssessnnns 10
B Y 7Y TSRS 12
A3 XMLQUERY ...ttt ettt et e e et e e e e s tt e e e e e e abeeeeeeateeeeaasntaeeeaaseaaee e e ntaeeeeanteeeeeenreeeeean seeannnraeeeanns 13
Y I 7Y = T PPN 14
.5 XIMLEXISTS oiittieteeitieee e e sttt e ettt e et e e e eitae e e s sttaeeesaabeeeeeasabeeeesssbaeeeaassaaeeesassaeeeeanseeaeennsbeaeeaas saeenssranenanns 15
4.6 METHOD/FUNCTION EXTRACT AND FUNCTION EXTRACTVALUEuvvveeeieteieesieeteeeeesireeeesssteeeessssseeessssnnsessssssssesssanns 16
4.7 METHOD/FUNCTION EXISTSINODEuvvvieeiieteteeeeiteteeessueeesesssseeessssssesssssssseessasssssssssssssssssssssssssssssessssssesssssnens 16
.8 XIMLCOLATTVAL .ttteieitieeeeeiitrereeesiuteeeeestteeeeeassseessassseeesaassasesasssssseeassseesaasssseesaasssasessnsssesessnssssessnssees naraeesanes 17
I I o T3 | USRS 17
4.9.0 XQUEIY tIONSTOIM c...vveeeetiieeeeeeitee e eeite e e e e tte e e eett e e e st ttae e e sttt e e e sasteaaesssstaaesesassaassssssaessassssaasnnnes 18
Vi N 1V | (V1 Lo [K PRSPPI 18
4.9.3 NIS@I T ettt ettt ettt e e e ettt e e e e e e e e sttt e e e e e e e e ettt e e e e eeeaaanatn saeeeeanaas 19
e [-4 (- PRSPPI 19
4.9.5 FENGIMIC ..ot e ettt ee e et ttee e e e et tee e e e e e aaee s e eeaa e e e e saaaesaastsassessassassasansasnsssanssanssesnsnsnssnnsssrnnnsees 20
e N (-7 Lo ol -2 SRR 21
W/ R A V[To [1(=2 (1Y | M (0 (=] 0T ot 1 (=L) SR RRE 21
4.9.8 DeleteXML (AePIreCAted)........ccuueeiueeeeeieeieeeeee et ese et eeeteeee e s ette e e teesettaesteesesasesseasisssesseanas 22
4.9.9 Insert and Append functions (deprecated)...........coccvuieevuveeiieiesieieeiiieeiieeeeeeeie e e 22
4,10 OTHER XIMILTYPE METHODS .. eettiiiietitttteeeeeeessssaiiasseteeeeeesssssassnnsssaseeeesessssasssnsnssseeeeeseesssssssnnsnssseseseseessenns 23
4. 1T XIMILTRANSFORM ..uuvvvvereeereeeseessssuuteseneeeeeessssssssaumssssseteeeessssssssamsssssseseeesssssssssnsssssseseesesssssssssnnnsssesees sannnnes 25
4,12 XQUERY FUNCTION ORAIVIEW ..vvveeeiurreeeeiiuseeeesisseseessssessenssssesssnssssssssssssssessasssssssssssssssessssesssssssssessssssesesnnsens 26
5 EPILOGUEciiiiiiiiiiiiiiiieninesesnassssessssssissssssissssssssssssssssessasasssssssssnssssssssssssssssss 27

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

1 Introduction

This compendium gives a short introduction to Oracle 12c and its facilities for database
administration. We discuss installing Oracle 12c and using SQL Developer. After that, there is
an introduction to some Oracle specific XML features accompanied by SQL/XML features
supported by Oracle. All the examples are tested on Oracle for Windows on a Windows 7
and Windows 8.1 64-bit platforms, but they should work in a similar manner on any
platform. It is recommended that you use Oracle for Windows.

The latest version of this compendium is available at
http://coursematerial.nikosdimitrakas.com/oraclexml|/ where all other relevant files can also
be found.

1.1 Oracle

Oracle is one of the major DBMSs and its latest versions have added support for XML mostly
according to the latest SQL standards. The main tool for working with an Oracle database (in
version 12) is called SQL Developer. SQL Developer requires Java (also an Oracle product).
The Oracle Enterprise Manager is a web-based tool for administrating an Oracle server and
its database objects.

1.2 Prerequisites

It is required that the reader is familiar with database administration and SQL and has a good
understanding of XML. This introduction focuses on Oracle specific XML features, so most
basic database concepts will not be explained in detail. All the examples can be executed in
any interface tool for Oracle (like SQL Plus or TOAD) but the recommended tool is SQL
Developer (which is bundled with Oracle).

1.3 Structure

In the next chapter we will take a quick look at the installation and configuration of Oracle
and at SQL Developer. After that we will look at the sample data used in the examples to
come. In chapter 4 we will go through several examples using the sample data and Oracle's
XML features.

2 Oracle 12c

Oracle 12c is available for free by Oracle for non-commercial use. The installation is divided
into two zip-files that are available on oracle.com. On the same site there are detailed
instructions for installation, configuration and other tasks.

2.1 Installation

Start by downloading the appropriate installation files. This compendium is based on version
12.1.0.1.0 for Windows x64. In order to download the installation files, you may need to
create a free account.

Unzip the two files in the same folder prior to initiating the installation. All the files should
be in the folder "database" where you should also find the executable setup.exe.

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

Run setup.exe to start the installation.

Skip the first to steps and eventually you will see three install options. Choose to "Create and
configure a database":

[Oradle Database 12c Release 1 Installer - Installing database - Step 3 of 11

C)R’ACI_E
Select Installation Option C
- " DATABASE
nfigur i 0 Select any of the following install options.
Software Updates (%) Creste and configure a database

T Installation Option

") Install database software only
A, God Installetion Options

) Upgrade an existing database

g

[<Bock [hex> | | cancel |

Next, choose a Desktop class installation:

[Oracle Database 12c Release 1 Installer - Installing database - Step 4 of 10

=g
OR’ACLE
System Class c
DATABASE
T Confiqure Securty Updates (%) Deskiop class.
Softwars Updates Choose this option if you are instaling on a laptop or deskiop class system. This option includes a starter

’T\ database and allows minimal configuration
A Instaliation Option ~

1 () Server class

% System Class

| Choose this option if you are instaling on a server class system, which Oracle defines as a system used in a

¥ Oracle Home User Selection

ion data center. This option allows for more advanced configuration options.

3

<Back | Mext> [cance |

In the next step, choose the user to be used for running the Oracle services. We use the
Windows Built-in Account, but you may use a different user if you prefer.

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

Now, choose where Oracle should be installed and specify to use the standard edition and
the default character set. Specify a unique global database name and set the system
password. You will need to use this password later, to connect to the database. Also specify
that a Container database should not be created.

Oradle Database 12c Release 1 Installer - Installing database - Step 6 of 10 =10 x|
- - ORACLE’
Typical Install Configuration _— ¢
DATABASE
1 Configure S Perform with basic
T Software Updates Oracls bage: [Ev— [=] | Browse... |
installation 0 _
T Software location [DAoracie\produc12.1 D\dbhome._1 [+] [Browse... |
T System Class
'|' Oracle Home User Seleclion Database file location. [Doracieloracata [Browse. ..]
7 Typical Installation | Database gdtion: i'enmpme Edition (6.0GB) ¥
Prerequisite Checks —
T Character sef | Defaut (WEBMSWIN1252)
¢ Summary PEEAREEST
Global database name: |nkos i kih se
Administrative passwWord: |sssssses
Confirm password: LTI
[] Create as Container database
Hep | < Back Next > l Cancel

Oracle will now check that everything is ok and present a summary before the installation

can begin. Press "Install" and the installation will begin. The installation process will take a
while.

B oracle Database 12c Release 1 Installer - Installing database - Step 9 of 10 . -10] x|
ORACLE’
Install Product _— c
e DATABASE
Progress
8%
Status:
 Oracle Database installation In Progress.
" « Prepare Succeeded
« Copy files Pending
i » Setup Pending
i Install Product Oracle Database configuration Pending

ORACLE 12c

DATABASE

Help

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

Eventually, the installation will be completed and the wizard will present a summary.

B Database Configuration Assistant I x|

Database creation complete. For details check the logfiles at:
D:\oracle\cfgtoollogs\dbca\nikos.

Database Information:
Global Database Name: nikos.itkth.se
System Identifier(SID): nikos
Server Parameter File name: D:\oracle\producti12.1.0\dbhome_1\database\spfilenikos.ora

EM Database Express URL: htips:/flocahost:5500/em|

Note: All database accounts except SYS and SYSTEM are locked. Select the Password
Management button to view a complete list of locked accounts or to manage the database
accounts. From the Password Management window, unlock only the accounts you will use.
Oracle Corporation strongly recommends changing the default passwords immediately after
unlocking the account.

Password Management...

o]

In this summary, you will notice the EM Database Express URL. This URL opens the Oracle
Enterprise Manager where you can manage your database instance. You can manage
performance settings, users, tables, views, triggers, etc. Log in as SYSTEM with the password
you specified earlier and take a look.

Another important field in this summary is the System Identifier (SID). This will be relevant
when creating a connection in SQL Developer.

After pressing OK on the above summary window, the main wizard window will reach the
final step "Finish" and Oracle will have been installed. Even though the installation wizard
does not require it, it seems to be necessary to restart Windows after the installation.
Otherwise, you may receive a strange error message when trying to create a connection in
SQL Developer.

[Orade Database 12c Release 1 Installer - Installing database - Step 10 of 10 L o [=]]
Finish ORACLE 4 ¢
DATABASE
The installation of Oracle Database was successful,
|
& Finish
tep | Seao

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

In the start menu, you will find several shortcuts to different Oracle tools. We will use SQL
Developer. SQL Developer is bundled with Oracle, but requires Java. The bundled version is
also not the latest and as Oracle 12c was recently released there are still some problems
with the compatibility of SQL Developer and Oracle 12c. It can therefore be a good idea to
download the latest SQL Developer separately and try it to see if it works better than the
bundled one. If not, the bundled version can be made to work with some simple
workarounds®.

SQL Developer does not require any installation. Just extract the files of the downloaded zip-
file in a directory and run the sqldeveloper.exe. The bundled version is located in a folder
named sqldeveloper in D:\oracle\product\12.1.0\dbhome_1 (or the location where you
installed oracle).

When starting SQL Developer for the first time, you will have to point to the JDK directory
(earlier versions may require that you point to the file java.exe in the JDK bin directory
instead). It is recommended to use the latest version of Java. The versions used in this
introduction are Java 7 Update 51 and SQL Developer 4.0.1.14. All versions of SQL Developer
4 have a bug that makes connections of type Local/Bequeath not work with Oracle 12c
(12.1.0). But they work with connection of type TNS.

2.1.1 Services
During the installation several Windows services were created:

N - =loix
File Action View Help

e |@lo= Hm e mnw

i, Services (Local) £} Services (Local)

OradleServiceNIKOS Name ~ | Desaription | Status | Startup Type | LogOnAs | A

« OradeJobSchedulerNIKOS Disabled Local System
Stop the service OradeOraD8 12Home IMTSRecoveryService Started Automatic Local System
Bause the service «; OradeOraDB 12Home ITNSListener Started Automatic Local System =
Restart the service

: OradeRemExecServiceV2 Started Manual Local System

{4 OradeServiceNIKOS Started Automatic Local System

. OradeVssWriterNIKOS Started Automatic Local System j

\ Extended A Standard /
[[

The one called OracleService is the main service for the database instance. The suffix NIKOS
is the System Identifier we saw in the installation summary earlier.

2.2 SQL Developer

SQL Developer is a tool for performing common database tasks easier. It provides several
wizards for database object creation, code completion for SQL, monitoring tools, etc.

When you start SQL Developer, you need to create a connection or use an existing one. To
work locally, create a connection of Type TNS, select the Network alias that matches the
System Identifier and log in as SYSTEM with your password. Creating a connection of type
Local/Bequeath does not work in SQL Developer 4, but works fine in SQL Developer 3.

Lif you get an error "no oragenericll in java.library.path", locate the file orageneric12.dll in the oracle folder
(in product\12.1.0\dbhome_1\BIN) and make a copy with the name orageneric11.dll.

Introduction to Oracle and XML version 1.2 March 2014

2 New / Select Database Connection

nikos dimitrakas

Connection Name Connection Details Connection Name |L0CA1H05T

Username [system

password [sennsens

[v]savePassword [d Connection Color

Oracle Access

Connection Type [ThS ~| Role [defautt v

(@) Network Alas (ko

() Connect [dentifier

[] 0S Authentication [| Kerberas Authentication || Praxy Connection

Status :

Help Save Clear Test

Once the connection has been created, you will see several panes. On the left you should
have the connections pane where you can explore all the objects of your connection. On the
right, you have one or more worksheets where you can write SQL commands or scripts. Each
worksheet is associated to one connection. Below the worksheet area, there is the result
area (or at least it will show up there after you execute a command). The placement of each

pane is freely configurable, so it could look like this:

¥, Oracle SQL Developer : LOCALHOST

Fle Edt View Mavigate Run Versigning Tools Help
EFoag 90 XEML O0-0- 1 &-
(@ Comections * B

-lojxf

+RT7S PUBER BB @ReA

|3 LocarosT |

[B, Cornectians % | worlsheet | Query Buider

10 SELECT 'mikes’, 2012
& (] Tobles (Fitered) f——

g
I

i

i
]

av

70 peFs_aQerrOR [Query Result %

25 DEF's_CALLDEST # B B3 [sQL | AlRows Fetched: 1in 0,01 ssconds
£ oer's_peFaLLTDEST § wos[§ 2n

EEIner JESTNATN 1nikos 2012}

a8

i
ﬁ;.
!

| Lna 2 Column 10

| tnsert | Modified | Windows: CRAF Editng

There are many things that can be configured in SQL Developer under Tools > Preferences.
One thing that may be important to fix is the date format. In the Preferences window under
Database NLS, Date Format, Decimal Separator, etc. can be configured. It is recommended

you set the Date Format to YYYY-MM-DD.

8

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

3 Sample Data

In this chapter we will take a look at the data that we will use in the examples to follow. We
will use a database with both relational data and XML data. That is, a database with tables,
columns, keys, integrity constraints, etc. but with a couple of columns containing XML
documents (each cell being an XML document).

Edition
¥ D
Year

¥ D

Price Title ¥ Name

= Originallanguage Authorship Street
Translations] Ci
Book Genre Book ity

¥ Author PostalCode
Country
¥ o
Name

Info

The columns Edition.Translations and Author.Info contain XML according to the following
XML Schemas. The rest of the columns are defined as VARCHAR2 and INTEGER. The only
column that allows NULL is the column Book.Genre.

XML Schema for documents in Edition.Translations:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="Translations">
<complexType>
<sequence>
<element name="Translation" minOccurs="0" maxOccurs="unbounded">
<complexType>
<attribute name="Language" type="string" use="required"/>
<attribute name="Publisher" type="string" default="N/A"/>
<attribute name="Price" type="integer" use="required"/>
</complexType>
</element>
</sequence>
</complexType>
</element>
</schema>

The value of the attribute Publisher must correspond to a value in the column
Publisher.Name. This kind of constraint could be implemented as a set of triggers.

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

XML Schema for documents in Author.Info:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="Info" type="InfoType"/>
<complexType name="InfoType">
<all>
<element name="Email" type="string"/>
<element name="YearOfBirth" type="integer"/>
<element name="Country" type="string"/>
</all>
</complexType>
</schema>

The entire script for creating and populating the database can be found on
http://coursematerial.nikosdimitrakas.com/oraclexml/

The script can be run through SQL Developer. It creates a schema called bookdb as well as all
the tables and other relevant objects in this schema.

3.1 XML data type

Oracle 11g R2 has an XML data type called XMLTYPE. This data type can be used with and
without an XML Schema, thus allowing for validation or no validation. There is no support for
DTD. Any schema to be used must be already registered. The validation performed is only
structural. Full validation can be done with the function XMLIsValid which can be used in a
constraint in order to ensure that only fully validated documents make it into the database.

In the provided database script, there is no validation. On the other hand, the XML data type
always checks that the input is well-formed.

4 Examples

In this chapter we will go through some examples of SQL/XML in Oracle and some examples
that use Oracle specific XML features. All the examples in this chapter assume that the
database has been created and that the default schema is bookdb.

4.1 XMLELEMENT, XMLFOREST, XMLATTRIBUTES

Let's start off with a few simple queries using some basic SQL/XML publishing functions. We
want to create an XML document for each author. The root element shall be "Author", the
name shall be an attribute and the author info (which is already an XML document) shall be
the content. The following SQL statement does that.

SELECT XMLELEMENT(NAME "Author", XMLATTRIBUTES(name AS "Namn"), info)
FROM author

10

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

Here is a portion of the result (2 rows):

<Author Namn="John Craft">
<Info>
<Email>jc@jc.com</Email>
<Country>England</Country>
<YearOfBirth>1948</YearOfBirth>
</Info>
</Author>
<Author Namn="Arnie Bastoft">
<Info>
<Email>bastoft@frei.at</Email>
<Country>Austria</Country>
<YearOfBirth>1971</YearOfBirth>
</Info>
</Author>

If we want to create an XML document for each publisher, it may be better to use
XMLFOREST, since the table publisher has many columns that we may want to have as
elements. Let's assume that for each publisher, we want to have a root element "Publisher'
and that all the columns should get their own elements. The following statement does that.

SELECT XMLELEMENT(NAME "Publisher", XMLFOREST(name AS "Name", street AS "Street",
city AS "City", postalcode AS "PostalCode", country AS "Country"))
FROM publisher

For each row in the table publisher, we get an XML document like this:

<Publisher>
<Name>ABC International</Name><Street>7th Bear St.</Street><City>Berlin</City>
<PostalCode>44500</PostalCode><Country>Germany</Country>

</Publisher>

One thing that is important when working with XML is the case of the element names and
attribute names. In the above examples, we used the double quotes in order to enforce the
desired case. Oracle's default is to capitalize column names when generating XML. So the
following statement would capitalize everything except for "City":

SELECT XMLELEMENT(NAME Publisher, XMLFOREST(name, street AS StrEEt, city AS "City"))
FROM publisher

The result looks like this:
<PUBLISHER>

<NAME>ABC International</NAME><STREET>7th Bear St.</STREET><City>Berlin</City>
</PUBLISHER>

11

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

4.2 XMLAGG

XMLAGG is an aggregate function and as such, it complies with the rules of aggregate
functions. If it is used without a GROUP BY clause, then all the rows will become one group.
It can of course be mixed with non-aggregated columns in the SELECT clause, but then all
non-aggregated columns must also appear in the GROUP BY clause.

If we want to expand on the example from the previous section and put all the authors in
one XML document, we need to use XMLAGG. Any column that appears inside the XMLAGG
function is considered to be aggregated. The following statement creates a root element
"Authors" and aggregates all the Author elements into it.

SELECT XMLELEMENT(NAME "Authors",

XMLAGG(XMLELEMENT(NAME "Author",
XMLATTRIBUTES(name AS "Name"),
info)))

FROM author

The result looks like this:

<Authors>
<Author Name="John Craft"><Info><Email>jc@jc.com</Email>
<Country>England</Country><YearOfBirth>1948</YearOfBirth></Info></Author>
<Author Name="Arnie Bastoft"><Info><Email>bastoft@frei.at</Email>
<Country>Austria</Country><YearOfBirth>1971</YearOfBirth></Info></Author>
<Author Name="Meg Gilmand"><Info><Email>megil@archeo.org</Email>
<Country>Australia</Country><YearOfBirth>1968</YearOfBirth></Info></Author>

</Authors>

XMLAGG in combination with GROUP BY is relevant when we need some nesting. Perhaps
we want to group the publishers per country. The result may be one Country element per
country containing one or more Publisher elements. If we want to also have a root element,
a second XMLAGG is required.

SELECT XMLELEMENT(NAME "PublishersByCountry", XMLAGG(countryxml))
FROM (SELECT XMLELEMENT(NAME "Country",
XMLATTRIBUTES(country AS "Name"),
XMLAGG(XMLELEMENT(NAME "Publisher",
XMLATTRIBUTES(name AS "Name", city AS "City")))) AS countryxml
FROM publisher
GROUP BY country) innertable

The nested statement produces one Country element for each country. The result is a table
with as many rows as there are countries (groups). The outer statement aggregates these
Country elements and makes them the content of the element PublishersByCountry. In the
nested statement the column country is the only one appearing in the SELECT clause outside
the aggregate function, and is thus the only column appearing in the GROUP BY clause. The

12

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

result of the nested statement is a table with the alias innertable and it has a column named
countryxml. The result of the entire statement has the following structure:

<PublishersByCountry>
<Country Name="England">
<Publisher Name="Benton Inc" City="London"/>
</Country>
<Country Name="Sweden">
<Publisher Name="Ba&sta Bok" City="Stockholm"/>
<Publisher Name="KLC" City="Uppsala"/>
<Publisher Name="SCB" City="Stockholm"/>
</Country>

</PublishersByCountry>

4.3 XMLQUERY

The XMLQUERY function can be used when we want to execute XQuery within an SQL
statement. The XMLQUERY function can also accept parameters that map values of the SQL
scope to variables in the XQuery scope. We may want to retrieve the name and country of
each author:

SELECT name, XMLQUERY('Si//Country/text()' PASSING info AS "i" RETURNING CONTENT)
FROM Author

In this case the XQuery expression is quite a simple one, but it can also be complicated. The
PASSING keyword allows us to map the current value of the column info as an XQuery
variable (in this case "i" which is then referred to as "S$i"). In Oracle, the keywords
RETURNING CONTENT are required and there is no alternative. The result has two columns:

John Craft England
Arnie Bastoft Austria
Meg Gilmand Australia
Chris Ryan France
Alan Griff USA
Marty Faust USA

The result of the XMLQUERY function is actually of the XML data type, but Oracle will
serialize it automatically when showing the result. Here is another example that illustrates
that the XMLQUERY function returns XML:

SELECT name, XMLQUERY('Sx/Country/text()'
PASSING XMLQUERY('Si//Country'
PASSING info AS "i"
RETURNING CONTENT) AS "x"
RETURNING CONTENT)
FROM Author

13

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

This produces the same result as the previous statement, but finds the country in two steps.
The nested XMLQUERY function in Oracle returns an XML value, but its root node is not the
Country element, even though it appears to be. In the outer XMLQUERY call, we must
therefore go from the root to the Country element. This behaviour is due to the RETURNING
CONTENT keywords that create a document node as the root node of the result. RETURNING
SEQUENCE (which is not yet implemented by Oracle) would let the Country element be the
root node.

If SQL Developer shows (XMLTYPE) instead of the serialized version, it may be necessary to
serialize the result with XMLCAST or if it’s a text node, by using the XPath function string().

XMLQUERY can also be used to create XML from a string. So XMLQUERY('<X>123</X>'
RETURNING CONTENT) will return an XML value. This is because the string '<X>123</X>'is a
valid XQuery statement.

4.4 XMLTABLE

When dealing with repeating elements in an XML document, we may want to break it down
into smaller XML-documents or even values. The XMLTABLE function can be used in the
FROM clause of a SELECT statement and it transforms the result of an XQuery statement into
a table. We may want to get one row per translation of each edition. The column
translations in the table edition contains multiple Translation elements. So the following
statement splits them up and presents them one by one.

SELECT id, book, tt.column_value
FROM Edition, XMLTABLE('St//Translation' PASSING translations AS "t") AS tt

The result should look like this:

<Translation Language="German" Publisher="Kingsly" Price="130"/>
<Translation Language="French" Publisher="Addison" Price="135"/>
<Translation Language="Russian" Publisher="Addison" Price="125"/>
<Translation Language="Swedish" Price="340"/>

<Translation Language="French" Price="320"/>

NN R R
NN R R R

The resulting column of the XMLTABLE function is called column_value when the keyword
COLUMNS is not present.

Just as with XMLQUERY the result of the XMLTABLE function is also wrapped inside a
document node. This can be illustrated with the following example, where in order to access
the Language attribute, we must go from the root (the document node) to the Translation
element node, to the attribute node:

SELECT id, book, XMLQUERY('/Translation/@Language'
PASSING tt.column_value RETURNING CONTENT)
FROM Edition, XMLTABLE('St//Translation' PASSING translations AS "t") AS tt

14

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

Using the keyword COLUMNS could also break down this further:

SELECT id, book, tt.language, tt.price, tt.publisher
FROM Edition, XMLTABLE('St//Translation'
PASSING translations AS "t"
COLUMNS Language VARCHAR(15) PATH '@Language’,
Price INTEGER PATH '@Price’,
Publisher VARCHAR(30) PATH '@Publisher') AS tt

The translations XML is now fully shredded:

¥, Oracle 5QL Developer =10l x|
fle Edit View Wavigate Run Versigning Tools Help
FoES Do XALO-O- &- e
B connectons = () | @htocunost =
*RTH PERYR 22 fued |3 Locarost~|
[, Comnections) | Worksheet Query Buider
= i LocatosT S SELECT id, book, tr.language, tt.price, tt.publisher
@ i Tables FROM Edition, ¥MLTABLE ('t lation'
o [viens PASSING translations &S “t”
- (i Editonng Views COLUMNS Langruage VARCHRR(1S) PATH '@lanquage’,
(3 indexes Price INTEGER PATH 'BPrice’,
- Padkages Fublisher VARCHAR(30) PATH "BPublisher') &S tt
@[] Procedures
& - {3 Functons.
-]} Queves
- {88 Queves Tables P > -
@ (@ T L=lSopt Output * Query..,
& (28 Crossediion Triggers o 5) 5 sou | Fetched 50 rows in 0,04 seconds
o ‘53“""" @ o|f soox|d wwewe | Price [PsusER
%L Sequences.
- — 1 1 German 130 Kingsly
5[] Materiokaed Views Logs: 2 1 French 135 Addison
-1 synonyms 3 1 1 Rusaian 125 Radison
{2 Public Synonyms 4 2 2 Swedish 340 (null)
o LOCALHOST = (=] 5 2 2 French 320 (null)
e . & 3 2 Swedish 390 KLC
— —— 73 2 French 330 KIC
) Tables | J 8 3 2Chinese 280 Shou-Ling
£ aumHOR 9 4 2 French 320 81C
€5 AUTHORSHIP 1 4 2 Italian 320 KLC
[o< u 4 2 Turkish 300 Turk And Turk
8] enrmion 2 & 2 Spanish 300 (wull) |
I£5] PuBLISHER P -
B 7 4 Swedish 160 5C8 |
(LR 4German 140 {null)
57 4Rusatan 140 7P |
LR 5 Swedish 260 Basta Bok
L &German 310 A5 Internationa 1
[18 2 & French 310 (mull)
e . Q‘ 18 2 £ Russian 300 (mull)
7 0 13 ¢ Garman 320 ABC Internstiona 1
= n 13 & French 330 ABC Internaticnal
2 1 2 German 350 ABC International |
B 15 8 Finnish 95 Sucmd. Bookkid
16 10Eaglish 120 (nudd) |
- Y3 s P PP]
4.5 XMLEXISTS

XMLEXISTS is a function that can be used to express conditions based on the existence of a
particular XML node. We could for example find any books that have been translated to
German (i.e. they have an edition with a translation whose language is German):

SELECT title
FROM Book
WHERE id IN (SELECT book
FROM edition
WHERE XMLEXISTS('St//Translation[@Language="German"]'
PASSING translations AS "t"))

The nested statement does the work of finding the correct books, while the outer statement
retrieves the titles. As you can see, the result of the function is a boolean value, so it can be
used as a condition. The result looks like this:

15

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

Misty Nights

Oceans on Earth
Contact

Music Now and Before
Musical Instruments

Le chateau de mon pere

4.6 Method/Function Extract and function ExtractValue

Oracle's method/function Extract and function ExtractValue can be used with XML objects
(values of the data type XMLTYPE) to retrieve XML fragments or values. They are deprecated
and the SQL/XML function XMLQUERY should be used instead. Here are some examples
anyway.

If we want to get the country of each author we could use any of the following:

SELECT name, a.info.extract('//Country/text()'), Extract(info, '//Country/text()"),
ExtractValue(info, '//Country')
FROM author a

The extract method and the Extract function return XML, so it is the exact node that is
returned. The ExtractValue function returns the value of the node and not the node itself.
The extract method (and any other XMLTYPE method) requires that the column containing
the XML object be qualified with an alias. Both of the following will therefore return an error
(even though at plain sight they appear to be correct).

SELECT name, info.extract('//Country')
FROM author

SELECT name, author.info.extract('//Country')
FROM author

Another important thing to remember is that the result of extract (method or function) will
be a new XML document with a document node as its root. This is the same behaviour as for
XMLQUERY which we discussed earlier.

4.7 Method/Function ExistsNode

The function ExistsNode and the corresponding XMLTYPE method existsNode can be used to
check the existence of a node for a specific XPath expression. They return 1 if the result is
not empty and 0 if the result is empty. We could for example find all the authors from
Sweden. Any one of the two conditions is enough.

SELECT name

FROM author a

WHERE ExistsNode(info, '//Country[. = "Sweden"]") = 1
OR a.info.existsNode('//Country[. = "Sweden"]') = 1

16

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

The result is the following:

Jakob Hanson
Marie Franksson

This function/method is deprecated and the SQL/XML function XMLEXISTS should be used
instead.

4.8 XMLColAttVal

XMLColAttVal is a function that transforms one or more columns to an XML fragment. For
each column an element "column" is created and the value becomes the content. The
column's name is stored as the value of the attribute "name". The same result could of
course be produced with the standard publishing functions of SQL/XML. Here is an example:

SELECT XMLCOLATTVAL(name, country, city)
FROM Publisher

This produces the following result:

<column name = "NAME">ABC International</column>
<column name = "LAND">Germany</column>
<column name = "CITY">Berlin</column>

<column name = "NAME">Addison</column>
<column name = "LAND">France</column>
<column name = "CITY">Toulouse</column>

We could of course add a root element with XMLELEMENT. The following statements will
have the same result.

SELECT XMLELEMENT(NAME "Publisher", XMLCOLATTVAL(name, country, city))
FROM Publisher

SELECT XMLELEMENT(NAME "Publisher",
XMLELEMENT(NAME "column", XMLATTRIBUTES('NAME' AS "name"), name),
XMLELEMENT(NAME "column", XMLATTRIBUTES('COUNTRY"' AS "name"), country),
XMLELEMENT(NAME "column", XMLATTRIBUTES('CITY' AS "name"), city))

FROM Publisher

4.9 DML for XML

Oracle 12 is the first version of Oracle to support (in part) the XQuery Update Facility. In
earlier versions of Oracle, XML could be manipulated only with Oracle specific functions. In
this section we look at some examples using both techniques. But first a general introduction
to both techniques. Starting with version 12 the Oracle specific functions have been
deprecated are likely to be removed in version 13.

17

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

4.9.1 XQuery transform

The XQuery transform statement makes a copy of an XML value, modifies it and returns it.
Technically, we could return something other than the modified copy, but that is hardly the
intended usage of the transform statement. The transform statement, being an XQuery
statement, must be used inside the function XMLQUERY. The PASSING keyword can be used
to pass an XML value from the SQL context to the XQuery context. The result of the
transform statement becomes the result of the function. The passed XML value itself is not
affected, which means that we need to use an SQL UPDATE in order to store the modified
value inside the table. So if we would like to change the information of an author, we would
use the following statement:

UPDATE author
SET info = XMLQUERY('transform-statement' PASSING info RETURNING CONTENT)
WHERE ...

The transform statement has three clauses and they are all required. A transform statement
has the following structure:

copy variable assignment
modify modify-expression
return return-expression

The variable assignment will most probably be used to create a copy of the passed value,
thus creating a copy to modify. The variable containing the copy will probably be the return-
expression. The modify-expression is where we can add, remove and alter the content of our
variable. The modify-expression can be any of the following expressions: delete, insert,
rename, or replace. In the following sections we will look at some examples that use the
different modify expressions.

4.9.2 DML functions

Oracle provides several functions for manipulating XML with operations similar to SQL
INSERT, UPDATE and DELETE. There is one function for update called UpdateXML, one
function for delete called DeleteXML and several functions for insert called InsertChildXML,
InsertChildXMLBefore, InsertChildXMLAfter, InsertXMLBefore, InsertXMLAfter and
AppendChildXML. All these functions work based on the same principal. They take an XML
value as a parameter and return a changed version of it. The original XML value is not
affected. That means that the column containing the original XML value has to be updated
with SQL UPDATE if the change is to become permanent. In this section we look at some
examples. For more details on these functions refer to the documentation.

If we compare these functions with the XQuery Update Facility, UpdateXML corresponds to
replace, DeleteXML corresponds to delete, Insert* and AppendChildXML correspond to
insert, and nothing corresponds to rename (we must instead delete the node and insert a

new one).

The XML DML functions are deprecated in Oracle 12 and will likely be removed in version 13.

18

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

4.9.3 insert

When using a transform statement to add nodes to an XML value, you need to use an "insert
node" expression. The placement of the new node will be based on an XPath expression and
on the specified position keyword (before, after, as last, as first). We could, for example, add
a Website element to the info of the author Carl Sagan (this would actually violate the XML
Schema, but let's ignore that for the sake of this example). The following statement finds
Carl Sagan's row in the table author and updates the info column with the result of the
XMLQUERY function. The XMLQUERY function takes the current value of the column info and
adds a new element as the last child element of the root element.

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify insert node element Website {"www.carlsagan.com"}
as last into Sres/Info
return Sres'
PASSING info AS "i" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

Note that when using an "insert node" expression, the node specified as a position reference
for the new node must exist and must exist exactly once. So exactly one matching node for
Sres/Info must exist, or an error will be raised.

4.9.4 delete

If we want to remove a node, then we use the "delete node" expression in the modify
clause. We can for example remove the Email element in the info XML of Carl Sagan:

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify delete node Sres/Info/Email
return Sres'
PASSING info AS "i" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

If the XPath expression specified after "delete node" matches several nodes, then all of them
will be removed.

You can undo the change caused by the previous statement with the following statement:

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify insert node element Email {"carlsagan@nasa.gov"}
as first into Sres/Info
return Sres'
PASSING info AS "i" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

19

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

4.9.5 rename

It is also possible to rename a node without having to remove it and create a new one. The
node's location and value will be unchanged. We could, for example, change the name of the
element Country to BirthCountry for all the authors (once again, this would violate the XML
Schema).

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify rename node Sres/Info/Country as "BirthCountry"
return Sres'
PASSING info AS "i" RETURNING CONTENT)

The XPath expression specified after "rename node" must match exactly one node. In this
case it does, but what if we wanted to change all the Translation elements to Version
elements in the XML values stored in the column edition.translations? According to the XML
Schema there can be zero to many Translation elements in each Translations element. And
that would cause an error. Fortunately, FLWOR expressions can be nested in the modify
clause. We can instruct the modify clause to loop through all the Translation elements and
do the rename once for each matching element:

UPDATE edition
SET translations = XMLQUERY('copy Sres := Strans
modify for St in Sres//Translation
return rename node St as "Version"
return Sres'
PASSING translations AS "trans" RETURNING CONTENT)

You can undo the changes caused by the previous statements with these ones:

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify rename node Sres/Info/BirthCountry as "Country"
return Sres'
PASSING info AS "i" RETURNING CONTENT)

UPDATE edition
SET translations = XMLQUERY('copy Sres := Strans
modify for St in Sres//Version
return rename node St as "Translation"
return Sres'
PASSING translations AS "trans" RETURNING CONTENT)

Note that when using a "rename node" expression, the node to be renamed must exist. This
can be easily checked with a WHERE clause in the SQL UPDATE statement.

20

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

4.9.6 replace

It is also possible to replace a node with another node or sequence of nodes. A "replace
node" expression identifies one node with an XPath expression and then replaces it with a
node or a sequence of nodes. We can for example replace the Email element of Carl Sagan
with a Skype element:

UPDATE author
SET info = XMLQUERY(' copy Sres := Sinfo
modify replace node Sres//Email with element Skype {"carl.sagan.author"}
return Sres'
PASSING info AS "info" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

A replace expression can also be used to replace the value of a node and not the node itself.
The keywords "value of" should be used in such case. We could for example change Carl
Sagan's year of birth (which is the content of the element YearOfBirth) to 1914.

UPDATE author
SET info = XMLQUERY(' copy Sres := Si
modify replace value of node Sres/Info/YearOfBirth with 1914
return Sres'
PASSING info AS "i" RETURNING CONTENT)
WHERE name = 'Carl Sagan'

If you want to restore Carl Sagan's info to the original value, just use the following
statement:

UPDATE author

SET info = '<Info><Email>carlsagan@nasa.gov</Email><Country>USA</Country>
<YearOfBirth>1913</YearOfBirth></Info>"'

WHERE name = 'Carl Sagan'

As with "inset node" and "rename node", "replace node" expressions may not specify an

XPath expression to a node that does not exist or that matches multiple nodes .

4.9.7 UpdateXML (deprecated)

The function UpdateXML is fairly simple. It takes three parameters: the original XML value,
an XPath expression identifying the node whose value is to be changed, and the new value. If
the XPath expression matches more nodes, then all of them will be updated. If the XPath
expression does not match any nodes, the result will be identical to the original XML value.

Let's say we want to change the e-mail address of the author Carl Sagan. We can use the
following UPDATE statement:

UPDATE author
SET info = UPDATEXML(info, '//Email/text()", 'carl@sagan.info')
WHERE name = 'Carl Sagan'

21

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

This statement identifies the correct row in the author table and replaces the value of the
column info with a new value generated by the function UpdateXML. The function takes the
current value of the column info and replaces the text node with the new value. UpdateXML
always replaces the entire node so UPDATEXML(info, '//Email', 'carl@sagan.info') would
instead have removed the element node and created a text node.

The third parameter can be a string value or XML. If the node to be updated is an attribute
node, then the third parameter provides the new value for the node, but the node itself is
not replaced, just its value.

Here is another way to achieve the same result as with the previous statement:

UPDATE author
SET info = UPDATEXML(info, '//Email', XMLELEMENT(NAME "Email", 'carl@sagan.info'))
WHERE name = 'Carl Sagan'

This is obviously unnecessarily complex, since it recreates the entire element node instead of
just switching the text node.

4.9.8 DeleteXML (deprecated)

Removing a node is done with the function DeleteXML. It deletes any nodes matching the
specified XPath expression. We could for example remove the Email element node from Carl
Sagan's info XML (which would violate the XML Schema, but we can ignore that right now).

UPDATE author
SET info = DELETEXML(info, '//Email’)
WHERE name = 'Carl Sagan'

If you want to restore Carl Sagan's info XML to the original, just use the following statement:

UPDATE author

SET info = '<Info><Email>carlsagan@nasa.gov</Email><Country>USA</Country>
<YearOfBirth>1913</YearOfBirth></Info>'

WHERE name = 'Carl Sagan'

4.9.9 Insert and Append functions (deprecated)

The reason there are many functions for adding nodes, is that the relative position of the
added nodes needs to be specified. You may want to add a node before another node or
after another node, or perhaps as the last child node. Let's look at some examples. If we
want to add a Website element for Carl Sagan, we may use the function AppendChildXML:

UPDATE author

SET info = APPENDCHILDXML(info, '//Info',
XMLTYPE('<Website>www.carlsagan.com</Website>'))

WHERE name = 'Carl Sagan'

22

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

This statement adds the new element node as the last child of the node matching the XPath
expression specified in the second parameter. In the previous statement we created an
XMLTYPE value from a string representation. Another way would be to use the
XMLELEMENT function:

UPDATE author
SET info = APPENDCHILDXML(info, '//Info',

XMLELEMENT(NAME "Website", 'www.carlsagan.com'))
WHERE name = 'Carl Sagan'

If we would prefer to add the Website element directly after the Email element, we can use
the function InsertXMLAfter:

UPDATE author
SET info = INSERTXMLAFTER(info, '//Email’,

XMLELEMENT(NAME "Website", 'www.carlsagan.com'))
WHERE name = 'Carl Sagan'

The created node becomes the next sibling to the node specified by the XPath expression. If
that XPath expression matches several nodes, then a new node will be added after each of
them.

If we want to add an attribute node, the function InsertChildXML may be the best choice.
Let's say that we want to add an attribute Launched to the Website element that we created
before and specify that Carl Sagan's website was launched in 1997. We could do that with
the following statement:

UPDATE author
SET info = INSERTCHILDXML(info, '//Website', '@Launched', 1997)
WHERE name = 'Carl Sagan'

The third parameter specifies the name of the node to be created. The at sign (@) indicates
that the node to be created shall be an attribute node. The fourth parameter specifies the
value of the new node. It can be of any type and it will be adapted to XML. If it is a date, time
or decimal, the current locale may affect the resulting layout.

4.10 Other XMLTYPE methods

Oracle has a number of extra methods that can be used on XMLTYPE objects. We have
already discussed some of them in previous sections. The methods getStringVal, getBLOBVal
and getCLOBVal are basically serialization methods that return the XMLTYPE object as a
String, BLOB and CLOB respectively. The method getNumberVal returns the value of the
object as a number. The object must have a value that is possible to convert to a number.
The XMLTYPE object must be a text node or attribute node. Here is a simple example:

SELECT XMLQUERY('99' RETURNING CONTENT).getNumberVal() + 1
FROM DUAL

23

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

The result is 100. XMLQUERY returns 99 as an XMLTYPE object and the method retrieves its
value as a number. The following does not work because the first part of the plus operation
is not a number:

SELECT XMLQUERY('99' RETURNING CONTENT) + 1
FROM DUAL

There are also some methods on the XMLTYPE that can return information about the XML
object. The method getRootElement returns the name of the root element unless the XML
object is a fragment and then the result is NULL. The method getSchemaURL returns the URL
of the XML Schema associated with the XML object. The method isFragment can be used to
check if an XML object is an XML fragment or an XML document. The method returns 1 or 0.
The method isSchemaValid can be used to validate the XML object given an XML Schema.
The method isSchemaBased checks if the object is associated with an XML Schema. The
method IsSchemaValidated checks if the object has already been validated based on its
associated XML Schema. It does not distinguish between not being valid and not having been
validated. The following statement uses some of these methods:

SELECT a.info.isSchemaBased(), a.info.isSchemaValidated(),
a.info.getRootElement(), a.info.isFragment()

FROM author a

WHERE id=1

The result is 0,0,'Info',0, which means that the XML object is not schema based, it has not
been validated, its root element is Info and it is not a fragment (it is an XML document).

There is also a method called transform, which can be used to apply an XSLT to the XML

object. This method is similar to the function XMLTransform, so they are both described in a
separate section.

24

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

4.11 XMLTransform

If we want to use XSLT to transform XML objects, we have two options. There is a function
XMLTransform and a method transform. Both have the same result. The function requires
that the XML value to be transformed is specified as a parameter, while the method
operates on a specific XML object. We could for example apply the following XSLT to the info
XML of the authors.

<xsl:transform xmins:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>

This XSLT restructures the information in the info XML and returns a Details element with
three attributes.

We could ask for the info XML of Carl Sagan, transformed according to the XSLT, with the
following statement:

SELECT XMLTRANSFORM(info,
'<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>')
FROM author
WHERE name = 'Carl Sagan'

The result is the following XML value:

<?xml version="1.0" encoding="UTF-8"?>
<Details Mailaddress="carlsagan@nasa.gov" Country="USA" Birthyear="1913"/>

25

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

The function adds an XML declaration and returns the XML value serialized. The method is a
little less flexible. It requires that the XSLT is provided as an XMLTYPE value, which is quite
easy to do. The following statement produces the same result as the one using the function.

SELECT a.info.transform(
XMLTYPE('<xsl:transform xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>'))
FROM author a
WHERE name = 'Carl Sagan'

Of course the XSLT doesn't have to be provided in this way. We could, for example, create a
table and store all of our XSLTs in it and then retrieve the one to use.

4.12 XQuery function ora:view

In some cases, we may want to access relational data from within XQuery. The function
ora:view makes this possible. It takes the name of a table or view as a parameter and returns
the content as an XML fragment with one ROW element per row and one subelement for
each column. The element names will be in upper case by default. We could, for example,
access all the countries of publishers (in an XQuery statement) using the following
statement:

SELECT XMLQUERY('for Sc in distinct-values(ora:view("publisher")//COUNTRY)
return element Country {Sc}'
RETURNING CONTENT)
FROM DUAL

The result is an XML fragment with one Country element for each unique country:
<Country>Austria</Country>
<Country>Belgium</Country>

<Country>China</Country>
<Country>England</Country>

26

Introduction to Oracle and XML version 1.2 March 2014 nikos dimitrakas

5 Epilogue

Oracle has been moving closer to the SQL standard with each new version. Many of the
Oracle specific functions have been deprecated and replaced by standard constructs. It is
therefore essential to follow the release information of each version. Some of the Oracle
specific features described here will probably be replaced in the years to come. The XQuery
Update Facility was the latest new feature to be implemented by Oracle. In the examples in
the previous chapter we looked at some of the features that are available in Oracle 12c.
There are many more details. But it has not been the goal of this introduction to cover
everything.

| hope you have found this introduction educational and fun. Do not hesitate to send
comments and suggestions that may help improve the next version of the compendium!

The Author
hos dimitral

27

